Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system
نویسندگان
چکیده
Semi-Lagrangian (SL) methods have been very popular in the Vlasov simulation community [28, 2, 3, 18, 31, 4, 23, 25]. In this paper, we propose a new Strang split SL discontinuous Galerkin (DG) method for solving the Vlasov equation. Specifically, we apply the Strang splitting for the Vlasov equation [5], as a way to decouple the nonlinear Vlasov system into a sequence of linear equations. To evolve the decoupled linear equations, we propose to couple the SL framework with the semi-discrete DG formulation. The proposed SL DG method is free of time step restriction compared with the Runge-Kutta DG method, which is known to suffer from numerical time step limitation with relatively small CFL numbers according to linear stability analysis. We apply the recently developed positivity preserving (PP) limiter [36], which is a low-cost black box procedure, to our scheme to ensure the positivity of the unknown probability density function without affecting the high order accuracy of the base SL DG scheme. We analyze the stability and accuracy properties of the SL DG scheme by establishing its connection with the direct and weak formulations of the characteristics/Lagrangian Galerkin method [22]. The quality of the proposed method is demonstrated via basic test problems, such as linear advection and rigid body rotation, and via classical plasma problems, such as Landau damping and the two stream instability.
منابع مشابه
On the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation
The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...
متن کاملDiscontinuous Galerkin Semi-lagrangian Method for Vlasov-poisson
Abstract. We present a discontinuous Galerkin scheme for the numerical approximation of the onedimensional periodic Vlasov-Poisson equation. The scheme is based on a Galerkin-characteristics method in which the distribution function is projected onto a space of discontinuous functions. We present comparisons with a semi-Lagrangian method to emphasize the good behavior of this scheme when applie...
متن کاملA comparison of semi-Lagrangian discontinuous Galerkin and spline based Vlasov solvers in four dimensions
The purpose of the present paper is to compare two semi-Lagrangian methods in the context of the four-dimensional Vlasov–Poisson equation. More specifically, our goal is to compare the performance of the more recently developed semi-Lagrangian discontinuous Galerkin scheme with the de facto standard in Eulerian Vlasov simulation (i.e. using cubic spline interpolation). To that end, we perform s...
متن کاملStudy of conservation and recurrence of Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems
In this paper we consider Runge-Kutta discontinuous Galerkin (RKDG) schemes for Vlasov-Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preservi...
متن کاملOn Runge-Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems
In this paper we consider Runge-Kutta discontinuous Galerkin (RKDG) schemes for Vlasov-Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preservi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011